
 1

Database Normalization

We want to create a table of user information, and we want to store each users' Name,

Company, Company Address, and some personal urls. You might start by defining a

table structure like this:

Zero Form

Users

name company company_address url1 url2

Joe ABC 1 Work Lane abc.com xyz.com

Jill XYZ 1 Job Street abc.com xyz.com

This table is in Zero Form because none of rules of normalization have been applied

yet. Notice the url1 and url2 fields -- what do we do when the application needs to ask

for a third url? Do you want to keep adding columns to your table and hard-coding

that form input field into your code? Obviously not, you would want to create a

functional system that could grow with new development requirements. Let's look at

the rules for the First Normal Form, and then apply them to this table.

First Normal Form

1. Eliminate repeating groups in individual tables.

2. Create a separate table for each set of related data.

3. Identify each set of related data with a primary key.

Notice how we're breaking that first rule by repeating the url1 and url2 fields? And

what about Rule Three, primary keys? Rule Three basically means we want to put

some form of unique, auto-incrementing integer value into every one of our records.

Otherwise, what would happen if we had two users named Joe and we wanted to tell

them apart? When we apply the rules of the First Normal Form we come up with the

following table:

Users

userId name company company_address url

1 Joe ABC 1 Work Lane abc.com

1 Joe ABC 1 Work Lane xyz.com

2 Jill XYZ 1 Job Street abc.com

2 Jill XYZ 1 Job Street xyz.com

Now the table is said to be in the First Normal Form. We've solved the problem of url

field limitation, but look to the problem we created. Every time we input a new record

into the users table, we've got to duplicate all that company and user name data. Not

only will our database grow much larger than we'd ever want it to, but we could easily

begin corrupting our data by misspelling some of that redundant information. Let's

apply the rules of Second Normal Form:

http://www.phpbuilder.com/columns/barry20000731.php3##
http://www.phpbuilder.com/columns/barry20000731.php3?page=2##

 2

Second Normal Form

1. Create separate tables for sets of values that apply to multiple records.

2. Relate these tables with a foreign key.

We break the url values into a separate table so we can add more in the future without

having to duplicate data. We'll also want to use our primary key value to relate these

fields:

users

userId name company company_address

1 Joe ABC 1 Work Lane

2 Jill XYZ 1 Job Street

urls

urlId relUserId url

1 1 abc.com

2 1 xyz.com

3 2 abc.com

4 2 xyz.com

Ok, we've created separate tables and the primary key in the users table, userId, is

now related to the foreign key in the urls table, relUserId. We're in much better

shape. But what happens when we want to add another employee of company ABC?

Or 200 employees? Now we've got company names and addresses duplicating

themselves all over the place, a situation just rife for introducing errors into our data.

So we'll want to look at applying the Third Normal Form:

Third Normal Form

1. Eliminate fields that do not depend on the key.

Our Company Name and Address have nothing to do with the User Id, so they

should have their own Company Id:

Users

userId name relCompId

1 Joe 1

2 Jill 2

companies

compId company company_address

1 ABC 1 Work Lane

2 XYZ 1 Job Street

http://www.phpbuilder.com/columns/barry20000731.php3?page=3##
http://www.phpbuilder.com/columns/barry20000731.php3?page=4##

 3

urls

urlId relUserId url

1 1 abc.com

2 1 xyz.com

3 2 abc.com

4 2 xyz.com

Now we've got the primary key compId in the companies table related to the foreign

key in the users table called relCompId, and we can add 200 users while still only

inserting the name "ABC" once. Our users and urls tables can grow as large as they

want without unnecessary duplication or corruption of data. Most developers will say

the Third Normal Form is far enough, and our data schema could easily handle the

load of an entire enterprise, and in most cases they would be correct.

